This is just a tiny announcement. I’m going to start reading Software Foundations. I’ve heard great things about it, and I want to pick up a theorem prover in the process.
If you’d like to join in and read with me, there’s an online reading group hosted at the HaskellNow wiki.
Here’s some sample Coq to start the adventure.
Inductive day : Type :=
| monday : day
| tuesday : day
| wednesday : day
| thursday : day
| friday : day
| saturday : day
| sunday : day.
Definition next_weekday (d:day) : day :=
match d with
| monday => tuesday
| tuesday => wednesday
| wednesday => thursday
| thursday => friday
| friday => monday
| saturday => monday
| sunday => monday
end.
Inductive bool : Type :=
| true : bool
| false : bool.
Definition negb (b:bool) : bool :=
match b with
| true => false
| false => true
end.
Definition andb (b1:bool) (b2:bool) : bool :=
match b1 with
| true => b2
| false => false
end.
Definition orb (b1:bool) (b2:bool) : bool :=
match b1 with
| false => b2
| true => true
end.
Example test_orb1: (orb true false) = true.
Proof. reflexivity. Qed.
Example test_orb2: (orb false false) = false.
Proof. reflexivity. Qed.
Example test_orb3: (orb false true) = true.
Proof. reflexivity. Qed.
Example test_orb4: (orb true true) = true.
Proof. reflexivity. Qed.