
GHC/Haskell Language Extensions: A Digest

Allele Dev (@queertypes)

February 19, 2015

Allele Dev (@queertypes) GHC/Haskell Language Extensions: A Digest

Hi, This is Me

Github: cabrera
Gitlab: cpp.cabrera
Twitter: @queertypes
General Blog: https://blog.cppcabrera.com/
Gamedev Blog:
https://applicative-games.cppcabrera.com/

Allele Dev (@queertypes) GHC/Haskell Language Extensions: A Digest

https://github.com/cabrera
https://gitlab.com/u/cpp.cabrera
https://twitter.com/cppcabrera
https://blog.cppcabrera.com/
https://applicative-games.cppcabrera.com/

Overview

Extensions as a Haskell User

Extension Categories, Broadly
What I Won’t Cover
Haskell 2010 in 5 Minutes
Small, Easy, and Quick Extensions
Diving In

GADTs
Existential Quantification
Generalized Newtype Deriving
Empty Data Declarations
Scoped Type Variables

Resources

Allele Dev (@queertypes) GHC/Haskell Language Extensions: A Digest

Overview

Extensions as a Haskell User
Extension Categories, Broadly

What I Won’t Cover
Haskell 2010 in 5 Minutes
Small, Easy, and Quick Extensions
Diving In

GADTs
Existential Quantification
Generalized Newtype Deriving
Empty Data Declarations
Scoped Type Variables

Resources

Allele Dev (@queertypes) GHC/Haskell Language Extensions: A Digest

Overview

Extensions as a Haskell User
Extension Categories, Broadly
What I Won’t Cover

Haskell 2010 in 5 Minutes
Small, Easy, and Quick Extensions
Diving In

GADTs
Existential Quantification
Generalized Newtype Deriving
Empty Data Declarations
Scoped Type Variables

Resources

Allele Dev (@queertypes) GHC/Haskell Language Extensions: A Digest

Overview

Extensions as a Haskell User
Extension Categories, Broadly
What I Won’t Cover
Haskell 2010 in 5 Minutes

Small, Easy, and Quick Extensions
Diving In

GADTs
Existential Quantification
Generalized Newtype Deriving
Empty Data Declarations
Scoped Type Variables

Resources

Allele Dev (@queertypes) GHC/Haskell Language Extensions: A Digest

Overview

Extensions as a Haskell User
Extension Categories, Broadly
What I Won’t Cover
Haskell 2010 in 5 Minutes
Small, Easy, and Quick Extensions

Diving In

GADTs
Existential Quantification
Generalized Newtype Deriving
Empty Data Declarations
Scoped Type Variables

Resources

Allele Dev (@queertypes) GHC/Haskell Language Extensions: A Digest

Overview

Extensions as a Haskell User
Extension Categories, Broadly
What I Won’t Cover
Haskell 2010 in 5 Minutes
Small, Easy, and Quick Extensions
Diving In

GADTs
Existential Quantification
Generalized Newtype Deriving
Empty Data Declarations
Scoped Type Variables

Resources

Allele Dev (@queertypes) GHC/Haskell Language Extensions: A Digest

Overview

Extensions as a Haskell User
Extension Categories, Broadly
What I Won’t Cover
Haskell 2010 in 5 Minutes
Small, Easy, and Quick Extensions
Diving In

GADTs

Existential Quantification
Generalized Newtype Deriving
Empty Data Declarations
Scoped Type Variables

Resources

Allele Dev (@queertypes) GHC/Haskell Language Extensions: A Digest

Overview

Extensions as a Haskell User
Extension Categories, Broadly
What I Won’t Cover
Haskell 2010 in 5 Minutes
Small, Easy, and Quick Extensions
Diving In

GADTs
Existential Quantification

Generalized Newtype Deriving
Empty Data Declarations
Scoped Type Variables

Resources

Allele Dev (@queertypes) GHC/Haskell Language Extensions: A Digest

Overview

Extensions as a Haskell User
Extension Categories, Broadly
What I Won’t Cover
Haskell 2010 in 5 Minutes
Small, Easy, and Quick Extensions
Diving In

GADTs
Existential Quantification
Generalized Newtype Deriving

Empty Data Declarations
Scoped Type Variables

Resources

Allele Dev (@queertypes) GHC/Haskell Language Extensions: A Digest

Overview

Extensions as a Haskell User
Extension Categories, Broadly
What I Won’t Cover
Haskell 2010 in 5 Minutes
Small, Easy, and Quick Extensions
Diving In

GADTs
Existential Quantification
Generalized Newtype Deriving
Empty Data Declarations

Scoped Type Variables

Resources

Allele Dev (@queertypes) GHC/Haskell Language Extensions: A Digest

Overview

Extensions as a Haskell User
Extension Categories, Broadly
What I Won’t Cover
Haskell 2010 in 5 Minutes
Small, Easy, and Quick Extensions
Diving In

GADTs
Existential Quantification
Generalized Newtype Deriving
Empty Data Declarations
Scoped Type Variables

Resources

Allele Dev (@queertypes) GHC/Haskell Language Extensions: A Digest

Overview

Extensions as a Haskell User
Extension Categories, Broadly
What I Won’t Cover
Haskell 2010 in 5 Minutes
Small, Easy, and Quick Extensions
Diving In

GADTs
Existential Quantification
Generalized Newtype Deriving
Empty Data Declarations
Scoped Type Variables

Resources

Allele Dev (@queertypes) GHC/Haskell Language Extensions: A Digest

Extensions as a Haskell User

How do you enable extensions?

Allele Dev (@queertypes) GHC/Haskell Language Extensions: A Digest

Example

A Haskell program.

module Main where

main = print "Hi"

Allele Dev (@queertypes) GHC/Haskell Language Extensions: A Digest

Example

A (Haskell + OverloadedStrings) program.

{-# LANGUAGE OverloadedStrings #-}
module Main where

main = print "Hi"

Allele Dev (@queertypes) GHC/Haskell Language Extensions: A Digest

Example

A (Haskell + OverloadedStrings + GADTs) program.

{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE GADTs #-}
module Main where

main = print "Hi"

Allele Dev (@queertypes) GHC/Haskell Language Extensions: A Digest

Enabling Extensions

Place them at the top of a file (cannonical, common)

Place them in a cabal file: extensions: <name>

NoImplicitPrelude makes a lot of sense here

Specify them on the command line/build: -X

Allele Dev (@queertypes) GHC/Haskell Language Extensions: A Digest

Enabling Extensions

Place them at the top of a file (cannonical, common)
Place them in a cabal file: extensions: <name>

NoImplicitPrelude makes a lot of sense here

Specify them on the command line/build: -X

Allele Dev (@queertypes) GHC/Haskell Language Extensions: A Digest

Enabling Extensions

Place them at the top of a file (cannonical, common)
Place them in a cabal file: extensions: <name>

NoImplicitPrelude makes a lot of sense here

Specify them on the command line/build: -X

Allele Dev (@queertypes) GHC/Haskell Language Extensions: A Digest

Enabling Extensions

Place them at the top of a file (cannonical, common)
Place them in a cabal file: extensions: <name>

NoImplicitPrelude makes a lot of sense here

Specify them on the command line/build: -X

Allele Dev (@queertypes) GHC/Haskell Language Extensions: A Digest

Extension Categories

Not in a mathematical sense

Extensions are just Functors between all of the Hask Categories,
perhaps?

Categorized by what part of the language they change
Just one categorization: deviates a little from GHC User Guide

Allele Dev (@queertypes) GHC/Haskell Language Extensions: A Digest

Extension Categories

Not in a mathematical sense
Extensions are just Functors between all of the Hask Categories,
perhaps?

Categorized by what part of the language they change
Just one categorization: deviates a little from GHC User Guide

Allele Dev (@queertypes) GHC/Haskell Language Extensions: A Digest

Extension Categories

Not in a mathematical sense
Extensions are just Functors between all of the Hask Categories,
perhaps?

Categorized by what part of the language they change

Just one categorization: deviates a little from GHC User Guide

Allele Dev (@queertypes) GHC/Haskell Language Extensions: A Digest

Extension Categories

Not in a mathematical sense
Extensions are just Functors between all of the Hask Categories,
perhaps?

Categorized by what part of the language they change
Just one categorization: deviates a little from GHC User Guide

Allele Dev (@queertypes) GHC/Haskell Language Extensions: A Digest

Extension Categories

Syntactic: add sugar, maintain semantics

Record sugar, new literals, more ways to pattern match

Data construction: allow for more to be expressed at type
definition time
Derivation: allows for more to be derived
Typeclasses: model more using typeclasses and instances
Generic Programming
Evaluation modifiers
RTS Additions
Signatures and Inference
Dependent Types

Allele Dev (@queertypes) GHC/Haskell Language Extensions: A Digest

Extension Categories

Syntactic: add sugar, maintain semantics
Record sugar, new literals, more ways to pattern match

Data construction: allow for more to be expressed at type
definition time
Derivation: allows for more to be derived
Typeclasses: model more using typeclasses and instances
Generic Programming
Evaluation modifiers
RTS Additions
Signatures and Inference
Dependent Types

Allele Dev (@queertypes) GHC/Haskell Language Extensions: A Digest

Extension Categories

Syntactic: add sugar, maintain semantics
Record sugar, new literals, more ways to pattern match

Data construction: allow for more to be expressed at type
definition time

Derivation: allows for more to be derived
Typeclasses: model more using typeclasses and instances
Generic Programming
Evaluation modifiers
RTS Additions
Signatures and Inference
Dependent Types

Allele Dev (@queertypes) GHC/Haskell Language Extensions: A Digest

Extension Categories

Syntactic: add sugar, maintain semantics
Record sugar, new literals, more ways to pattern match

Data construction: allow for more to be expressed at type
definition time
Derivation: allows for more to be derived

Typeclasses: model more using typeclasses and instances
Generic Programming
Evaluation modifiers
RTS Additions
Signatures and Inference
Dependent Types

Allele Dev (@queertypes) GHC/Haskell Language Extensions: A Digest

Extension Categories

Syntactic: add sugar, maintain semantics
Record sugar, new literals, more ways to pattern match

Data construction: allow for more to be expressed at type
definition time
Derivation: allows for more to be derived
Typeclasses: model more using typeclasses and instances

Generic Programming
Evaluation modifiers
RTS Additions
Signatures and Inference
Dependent Types

Allele Dev (@queertypes) GHC/Haskell Language Extensions: A Digest

Extension Categories

Syntactic: add sugar, maintain semantics
Record sugar, new literals, more ways to pattern match

Data construction: allow for more to be expressed at type
definition time
Derivation: allows for more to be derived
Typeclasses: model more using typeclasses and instances
Generic Programming

Evaluation modifiers
RTS Additions
Signatures and Inference
Dependent Types

Allele Dev (@queertypes) GHC/Haskell Language Extensions: A Digest

Extension Categories

Syntactic: add sugar, maintain semantics
Record sugar, new literals, more ways to pattern match

Data construction: allow for more to be expressed at type
definition time
Derivation: allows for more to be derived
Typeclasses: model more using typeclasses and instances
Generic Programming
Evaluation modifiers

RTS Additions
Signatures and Inference
Dependent Types

Allele Dev (@queertypes) GHC/Haskell Language Extensions: A Digest

Extension Categories

Syntactic: add sugar, maintain semantics
Record sugar, new literals, more ways to pattern match

Data construction: allow for more to be expressed at type
definition time
Derivation: allows for more to be derived
Typeclasses: model more using typeclasses and instances
Generic Programming
Evaluation modifiers
RTS Additions

Signatures and Inference
Dependent Types

Allele Dev (@queertypes) GHC/Haskell Language Extensions: A Digest

Extension Categories

Syntactic: add sugar, maintain semantics
Record sugar, new literals, more ways to pattern match

Data construction: allow for more to be expressed at type
definition time
Derivation: allows for more to be derived
Typeclasses: model more using typeclasses and instances
Generic Programming
Evaluation modifiers
RTS Additions
Signatures and Inference

Dependent Types

Allele Dev (@queertypes) GHC/Haskell Language Extensions: A Digest

Extension Categories

Syntactic: add sugar, maintain semantics
Record sugar, new literals, more ways to pattern match

Data construction: allow for more to be expressed at type
definition time
Derivation: allows for more to be derived
Typeclasses: model more using typeclasses and instances
Generic Programming
Evaluation modifiers
RTS Additions
Signatures and Inference
Dependent Types

Allele Dev (@queertypes) GHC/Haskell Language Extensions: A Digest

What I Cover

Several small, simple, sugary extensions

GADTs
Existential Quantification
Generalized Newtype Deriving
Empty Data Declarations
Scoped Type Variables

Allele Dev (@queertypes) GHC/Haskell Language Extensions: A Digest

What I Cover

Several small, simple, sugary extensions
GADTs

Existential Quantification
Generalized Newtype Deriving
Empty Data Declarations
Scoped Type Variables

Allele Dev (@queertypes) GHC/Haskell Language Extensions: A Digest

What I Cover

Several small, simple, sugary extensions
GADTs
Existential Quantification

Generalized Newtype Deriving
Empty Data Declarations
Scoped Type Variables

Allele Dev (@queertypes) GHC/Haskell Language Extensions: A Digest

What I Cover

Several small, simple, sugary extensions
GADTs
Existential Quantification
Generalized Newtype Deriving

Empty Data Declarations
Scoped Type Variables

Allele Dev (@queertypes) GHC/Haskell Language Extensions: A Digest

What I Cover

Several small, simple, sugary extensions
GADTs
Existential Quantification
Generalized Newtype Deriving
Empty Data Declarations

Scoped Type Variables

Allele Dev (@queertypes) GHC/Haskell Language Extensions: A Digest

What I Cover

Several small, simple, sugary extensions
GADTs
Existential Quantification
Generalized Newtype Deriving
Empty Data Declarations
Scoped Type Variables

Allele Dev (@queertypes) GHC/Haskell Language Extensions: A Digest

Haskell 2010

What does Haskell 2010 the language look like?

We build intuition from here to see how extensions change the
language

Allele Dev (@queertypes) GHC/Haskell Language Extensions: A Digest

Haskell 2010

What does Haskell 2010 the language look like?
We build intuition from here to see how extensions change the
language

Allele Dev (@queertypes) GHC/Haskell Language Extensions: A Digest

Haskell 2010: Module Exports

module AllTheThings (
makeOlder, Person(..)

) where

Allele Dev (@queertypes) GHC/Haskell Language Extensions: A Digest

Haskell 2010: Module Imports

-- import everything from Data.List
import Data.List

-- import everything from Prelude except foldr
import Prelude hiding (foldr)

-- import everything from ByteString, but must be
-- prefixed with "B." to access
import qualified Data.ByteString as B

-- import only foldr from Data.Foldable
import Data.Foldable (foldr)

Allele Dev (@queertypes) GHC/Haskell Language Extensions: A Digest

Haskell 2010: Type Definition

-- generate new types treated distinctly
newtype Age = Age Int

-- type alias; treated identically
type Contents = Contents String

-- sum types; "one-of" types; "or" types
data Color = Red | Green | Blue

-- product types: "each-of" types; "and" types
data Box = Box Age Contents

-- recursive types and polymorphism
data Tree a = Leaf a | Branch (Tree a) (Tree a)

-- record types
data Person = Person { age :: Age

, name :: String
, faveColor :: Color
}

Allele Dev (@queertypes) GHC/Haskell Language Extensions: A Digest

Haskell 2010: Deriving

Six classes that can be automatically implemented by compiler
Read, Show, Eq, Ord, Enum, Bounded

data Color = Red | Green | Blue deriving (Show, Eq)
> Red == Green
False
> Green
Green

Allele Dev (@queertypes) GHC/Haskell Language Extensions: A Digest

Haskell 2010: Typeclasses

Interface mechanism that allows for overloading based on type

class Render a where
render :: a -> String

instance Render Color where
render Green = "Green"
render Red = "Red"
render Blue = "Blue"

Allele Dev (@queertypes) GHC/Haskell Language Extensions: A Digest

Haskell 2010: Functions and Type Signatures

-- name :: (type ->)* -> return_type
f :: Int -> String

-- v typeclass constraints
g :: Show a => a -> String

Allele Dev (@queertypes) GHC/Haskell Language Extensions: A Digest

Haskell 2010: Functions and Pattern Matching

f' :: Color -> Int
f' Red = 1
f' Green = 2
f' Blue = 3

g' :: Color -> Int
g' color = case color of

Red -> 1
Green -> 2
Blue -> 3

Allele Dev (@queertypes) GHC/Haskell Language Extensions: A Digest

Haskell 2010: Functions and Local Bindings

-- let: local bindings prior to function definition
-- where: local bindings after function definition
h :: Int -> Int
h x = let x' = x + 10 in

multiply x' 7
where multiply x'' y = x'' * y

Allele Dev (@queertypes) GHC/Haskell Language Extensions: A Digest

Haskell 2010: Records and Pattern Matching

-- match all fields
makeOlder :: Person -> Person
makeOlder (Person {age= Age(newAge), name=name}) =

Person {age=Age (newAge+1), name=name}

-- match one field
peekOlder :: Person -> Age
peekOlder (Person {age= Age(age)}) = Age (age+1)

Allele Dev (@queertypes) GHC/Haskell Language Extensions: A Digest

Haskell 2010: Functions and Guards

newtype HpPct = HpPct Int deriving Show
data State =

Good | Okay | NotSoGood | Bad | Nope
deriving Show

-- guards; boolean matching convenience
hpState :: HpPct -> State
hpState (HpPct x)

| x == 100 = Good
| x > 75 = Okay
| x > 50 = NotSoGood
| x > 25 = Bad
| otherwise = Nope

Allele Dev (@queertypes) GHC/Haskell Language Extensions: A Digest

Haskell 2010: Partial Application

f :: Int -> Int -> Int
f x y = x + y

> :t f 1
f 1 :: Int -> Int
> (f 1) 2
3

Allele Dev (@queertypes) GHC/Haskell Language Extensions: A Digest

Haskell 2010: Sections

-- partial-application sugar
> map (+1) [1,2,3,4]
[2,3,4,5]

-- without sugar
> map (\x -> x + 1) [1,2,3,4]
[2,3,4,5]

Allele Dev (@queertypes) GHC/Haskell Language Extensions: A Digest

Haskell 2010: Parametric Polymorphism

-- f is polymorphic over a; for all a, f must work
f :: a -> a
f x = x

-- swap is polymorphic over a and b
swap :: (a,b) -> (b,a)
swap (x,y) = (y,x)

-- reverse can operate on homogeneous lists
reverse :: [a] -> [a]

Allele Dev (@queertypes) GHC/Haskell Language Extensions: A Digest

Haskell 2010: Higher Kinds

Kinds: the types of types

data Maybe a = Just a | Nothing
data Either a b = Left a | Right b

-- Maybe requires one type to become a usable type
> :kind Maybe
Maybe :: * -> *

-- Either requires two type
> :kind Either
Either :: * -> * -> *

Allele Dev (@queertypes) GHC/Haskell Language Extensions: A Digest

Haskell 2010: do-notation

do-notation: sugar over (>>=) for Monad instances

main = do
contents <- getLine
print contents

main = getLine >>= (\contents -> print contents)

Allele Dev (@queertypes) GHC/Haskell Language Extensions: A Digest

Haskell 2010: List Comprehensions

> [x | x <- [1..10], x > 4]
[5,6,7,8,9,10]

Allele Dev (@queertypes) GHC/Haskell Language Extensions: A Digest

Haskell 2010: Review

Modules
Type definition
Deriving
Typeclasses
Functions
Type signatures
Pattern matching
Records
Guards
Partial application and section sugar
Parametric polymorphism
Do-notation
List comprehensions
A little more

Allele Dev (@queertypes) GHC/Haskell Language Extensions: A Digest

https://www.haskell.org/onlinereport/haskell2010/

Simple Extensions

On to extensions now - simple extensions

These are extensions that are simpler and take less to
understand

Allele Dev (@queertypes) GHC/Haskell Language Extensions: A Digest

Simple Extensions

On to extensions now - simple extensions
These are extensions that are simpler and take less to
understand

Allele Dev (@queertypes) GHC/Haskell Language Extensions: A Digest

Magic Hash

Key idea: enables the use of ‘#’ as a suffix in the names of
things
That’s it
So why does this matter?

Allele Dev (@queertypes) GHC/Haskell Language Extensions: A Digest

Magic Hash

GHC primitives are all exposed as ‘#’ suffixed types
To access those unboxed types, you’ll need this extension
See: GHC.Exts

Allele Dev (@queertypes) GHC/Haskell Language Extensions: A Digest

https://hackage.haskell.org/package/base/docs/GHC-Exts.html

Binary Literals (7.10)

New in GHC 7.10: binary literals, e.g., 0b0010
Interpreted as fromInteger <literal_as_int>

Allele Dev (@queertypes) GHC/Haskell Language Extensions: A Digest

Pattern Guards

Generalized guards: allows pattern matching rather than just
Bool predicates

f :: Maybe Int -> Maybe Int -> Maybe Int
f x y

| Just x' <- x
, Just y' <- y = Just $ x' + y'
| otherwise = Nothing

Allele Dev (@queertypes) GHC/Haskell Language Extensions: A Digest

Tuple Sections

Section syntax extended to tuples
Partial application over tuple construction

> :t (,1,,,'a')
(,1,,,'a') :: Num t1 => t -> t2 -> t3 ->

(t, t1, t2, t3, Char)
> -- eqv: \a b c -> (a,1,b,c,'a')

Allele Dev (@queertypes) GHC/Haskell Language Extensions: A Digest

Lambda Case

Allows shorthand for inline case expressions

\case ->
Red -> ...
Green -> ...

-- previously
\color -> case color of

Red -> ...
Green -> ...

Allele Dev (@queertypes) GHC/Haskell Language Extensions: A Digest

Multi-way If

Better support for multi-branch if expressions using guard
syntax
Can be nested

if | HpPct > 75 -> Healthy
| HpPct > 50 -> Standing
| HpPct > 25 -> Faltering
| HpPct > 0 -> Running
| otherwise -> Nope

Allele Dev (@queertypes) GHC/Haskell Language Extensions: A Digest

Named Field Puns

Short-hand for accessing record fields in a pattern match

data D = D {a :: Int, b :: Int}

-- old way
f (D {a=a, b=b}) = a + b

-- new way
f (D {a, b}) = a + b

Allele Dev (@queertypes) GHC/Haskell Language Extensions: A Digest

Record Wild Cards

Brings all fields for a data type into scope by their accessor
name

f (D{..}) = a + b

Allele Dev (@queertypes) GHC/Haskell Language Extensions: A Digest

Explicit Namespaces

Allows disambiguation between what namespace a name is
supposed to come from
Valid options: pattern, family, type

Everything else is found in the term namespace

import X.Y (pattern f, type (++), family Z, concatWith)

Allele Dev (@queertypes) GHC/Haskell Language Extensions: A Digest

Bang Patterns

Lightweight strictness annotations preceding
Overrides default non-strictness
Conventional wisdom: “strict leaves, lazy spine”
Matching against strict bottom (undefined and kin)
diverges/crashes

data Account = Account { !name :: String
, !aId :: Int
}

Allele Dev (@queertypes) GHC/Haskell Language Extensions: A Digest

Typed Holes & Partial Type Signatures

Interactive programming with Haskell!
Typed Holes (7.8): in a function definition, insert _ to get an
informative type error
Partial Type Signatures (7.10): in a signature, insert _ to get a
warning and an inferred type

Allele Dev (@queertypes) GHC/Haskell Language Extensions: A Digest

Typed Holes & Partial Type Signatures

id' a = _

Found hole ‘_’ with type: t1
Where: ‘t1’ is a rigid type variable bound by

the inferred type of
id' :: t -> t1 at <interactive>:2:5

Relevant bindings include
a :: t (bound at <interactive>:2:9)
id' :: t -> t1 (bound at <interactive>:2:5)
In the expression: _

In an equation for ‘id'’: id' a = _

Allele Dev (@queertypes) GHC/Haskell Language Extensions: A Digest

Typed Holes & Partial Type Signatures

{-# LANGUAGE PartialTypeSignatures #-}
id' :: _
id' a = a

H.hs:4:8: Warning:
Found hole ‘_’ with type: t -> t
Where: ‘t’ is a rigid type variable bound by
the inferred type of

id' :: t -> t at H.hs:5:1
In the type signature for ‘id'’: _

Allele Dev (@queertypes) GHC/Haskell Language Extensions: A Digest

Derive Functor, Foldable, and Traversable

Extend deriving to allow filling in:
Functor: DeriveFunctor
Foldable: DeriveFoldable
Traversable: DeriveTraversable

There’s a few others, but with more nuances than these

Allele Dev (@queertypes) GHC/Haskell Language Extensions: A Digest

Overloaded Strings and Lists

Allows for String literals to take on other types
A generalized from exists to allow treating list literals as other
types
Actual type determined by surrounding context
Compile-time error if ambiguous

class IsString a where
fromString :: String -> a

instance ByteString a where
fromString = pack

Allele Dev (@queertypes) GHC/Haskell Language Extensions: A Digest

Overloaded Strings and Lists

class IsList a where
type Item a
fromList :: [Item l] -> l
toList :: l -> [Item l]

instance (Ord a) => IsList (Set a) where
type Item (Set a) = a
fromList = Set.fromList
toList = Set.toList

Allele Dev (@queertypes) GHC/Haskell Language Extensions: A Digest

Bigger Extensions

Let’s try to understand some heavier extensions that change
what can be expressed in Haskell.

GADTs
Existential quantification
Generalized Newtype Deriving
Empty Data Declarations
Scoped Type Variables

Allele Dev (@queertypes) GHC/Haskell Language Extensions: A Digest

Bigger Extensions

Let’s try to understand some heavier extensions that change
what can be expressed in Haskell.
GADTs

Existential quantification
Generalized Newtype Deriving
Empty Data Declarations
Scoped Type Variables

Allele Dev (@queertypes) GHC/Haskell Language Extensions: A Digest

Bigger Extensions

Let’s try to understand some heavier extensions that change
what can be expressed in Haskell.
GADTs
Existential quantification

Generalized Newtype Deriving
Empty Data Declarations
Scoped Type Variables

Allele Dev (@queertypes) GHC/Haskell Language Extensions: A Digest

Bigger Extensions

Let’s try to understand some heavier extensions that change
what can be expressed in Haskell.
GADTs
Existential quantification
Generalized Newtype Deriving

Empty Data Declarations
Scoped Type Variables

Allele Dev (@queertypes) GHC/Haskell Language Extensions: A Digest

Bigger Extensions

Let’s try to understand some heavier extensions that change
what can be expressed in Haskell.
GADTs
Existential quantification
Generalized Newtype Deriving
Empty Data Declarations

Scoped Type Variables

Allele Dev (@queertypes) GHC/Haskell Language Extensions: A Digest

Bigger Extensions

Let’s try to understand some heavier extensions that change
what can be expressed in Haskell.
GADTs
Existential quantification
Generalized Newtype Deriving
Empty Data Declarations
Scoped Type Variables

Allele Dev (@queertypes) GHC/Haskell Language Extensions: A Digest

GADTs

A new syntax and semantics for modeling data types
The key idea is that pattern matching causes refinement
I’ll walk through an example given in the user guide to
illustrate this
In practice, it means that given a polymorphic sum type:

Each branch can carry information about what should be there
GADTs let us model this

Allele Dev (@queertypes) GHC/Haskell Language Extensions: A Digest

GADTs

-- with GADTs
data Term a where

Lit :: Int -> Term Int
Succ :: Term Int -> Term Int
IsZero :: Term Int -> Term Bool
If :: Term Bool -> Term a -> Term a -> Term a
Pair :: Term a -> Term b -> Term (a,b)

Allele Dev (@queertypes) GHC/Haskell Language Extensions: A Digest

GADTs

-- w/o GADTs
data Term

= Lit Int
| Succ Term
| IsZero Term
| If Term Term Term
| Pair Term Term

Allele Dev (@queertypes) GHC/Haskell Language Extensions: A Digest

GADTs

-- without GADTs, our language goes wrong
> :t If (Lit 10) (Lit 11) (Lit 12)
If (Lit 10) (Lit 11) (Lit 12) :: Term

Allele Dev (@queertypes) GHC/Haskell Language Extensions: A Digest

GADTs

-- with GADTs, type-checker catches error
> :t If (Lit 10) (Lit 11) (Lit 12)
Couldn't match type ‘Int’ with ‘Bool’

Expected type: Term' Bool
Actual type: Term' Int

In the first argument of ‘If'’, namely ‘(Lit' 10)’
In the expression: If' (Lit' 10) (Lit' 11) (Lit' 12)

Allele Dev (@queertypes) GHC/Haskell Language Extensions: A Digest

GADTs

-- GADTs facilitate writing DSL interpreters
eval :: Term a -> a
eval (Lit i) = i
eval (Succ i) = 1 + eval i
eval (IsZero t) = eval t == 0
eval (If p l r) = if (eval p) then (eval l) else (eval r)
eval (Pair a b) = (eval a, eval b)

Allele Dev (@queertypes) GHC/Haskell Language Extensions: A Digest

GADTs

Some important limitations
Can no longer use deriving: requires StandaloneDeriving
May interfere with type inference

When pattern matching, scrutinee, case expr result, and locals
must be rigid

rigid: compiler knows type of term under consideration
may require type annotations from time to time

Allele Dev (@queertypes) GHC/Haskell Language Extensions: A Digest

Existential Quantification

Key intuition: homogeneous processing of heterogeneous
collections

Allele Dev (@queertypes) GHC/Haskell Language Extensions: A Digest

Existential Quantification

Allele Dev (@queertypes) GHC/Haskell Language Extensions: A Digest

Existential Quantification

Allele Dev (@queertypes) GHC/Haskell Language Extensions: A Digest

Existential Quantification

Allele Dev (@queertypes) GHC/Haskell Language Extensions: A Digest

Existential Quantification

Allele Dev (@queertypes) GHC/Haskell Language Extensions: A Digest

Generalized Newtype Deriving

Mixes newtype with deriving
Can derive any typeclass underlying type has instances for
Allows for greater reuse of generative types

Allele Dev (@queertypes) GHC/Haskell Language Extensions: A Digest

Generalized Newtype Deriving

Allele Dev (@queertypes) GHC/Haskell Language Extensions: A Digest

Generalized Newtype Deriving

Allele Dev (@queertypes) GHC/Haskell Language Extensions: A Digest

Generalized Newtype Deriving

Allele Dev (@queertypes) GHC/Haskell Language Extensions: A Digest

Empty Data Declarations

Allows for nullary data declarations
Fantastic for phantom type techniques!

Allele Dev (@queertypes) GHC/Haskell Language Extensions: A Digest

Empty Data Declarations

data OpenAccess
data Sensitive
data ReallySensitive
data TopSecret

Allele Dev (@queertypes) GHC/Haskell Language Extensions: A Digest

Empty Data Declarations

Allele Dev (@queertypes) GHC/Haskell Language Extensions: A Digest

Scoped Type Variables

Allows for type annotations in more places than previously
allowed

Scope of type signatures variables was previously limited to
extent of type signature

Further, these annotations represent rigid type variables
They’re more than just hints

Specifically, scoped type variables may be bound by:
A declaration type signature
An expression type signature
A pattern type signature
Class and instance declarations

Allele Dev (@queertypes) GHC/Haskell Language Extensions: A Digest

Scoped Type Variables

f :: [a] -> [a]
f (x:xs) = xs ++ [x :: a] -- rejected by compiler

-- `a` not in scope

-- ExplicitForAll + ScopedTypeVariables
g :: forall a. [a] -> [a]
g (x:xs) = xs ++ [x :: a] -- okay!

Allele Dev (@queertypes) GHC/Haskell Language Extensions: A Digest

Scoped Type Variables

Frequently seen in conjunction with exception handlers:

try httpRequest uri `catch` (
(\(e :: SomeException) -> print "Oh no...")

)

Allele Dev (@queertypes) GHC/Haskell Language Extensions: A Digest

Dangerous Combinations

GND and GADTs togther, in recent Haskell version

Allele Dev (@queertypes) GHC/Haskell Language Extensions: A Digest

Next Steps

Allele Dev (@queertypes) GHC/Haskell Language Extensions: A Digest

Resources

Haskell 2010 Specification
GHC/Haskell 7.10 User Guide

Scoped Type Variables
Empty Data Declarations
Existential Quantification
GADTs
Generalized Newtype Deriving

Allele Dev (@queertypes) GHC/Haskell Language Extensions: A Digest

https://www.haskell.org/onlinereport/haskell2010/
https://downloads.haskell.org/~ghc/7.10.1-rc2/docs/html/
https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/other-type-extensions.html#scoped-type-variables
https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/data-type-extensions.html#nullary-types
https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/data-type-extensions.html#existential-quantification
https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/data-type-extensions.html#gadt
https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/deriving.html#newtype-deriving

Thank You!

Allele Dev (@queertypes) GHC/Haskell Language Extensions: A Digest

