Fhe-CaseforHaskell Ask More of Your Languages

Allele Dev (@queertypes)

July 22, 2014

Allele Dev (@queertypes) Fhe-CaseforHaskelt Ask More of Your Languages

Contact Me!

@ Github: cabrera
o Twitter: @queertypes
o Blog: Read, Review, Refactor

Allele Dev (@queertypes) Fhe-CaseforHaskelt Ask More of Your Languages

https://github.com/cabrera
https://twitter.com/cppcabrera
https://blog.cppcabrera.com/

@ Programming languages shape how we solve problems

@ Types are a valuable tool for enforcing and communicating
design

@ Many mainstream languages are missing key ingredients for
sound abstraction

Allele Dev (@queertypes) Fhe-CaseforHaskelt Ask More of Your Languages

Why the Change in Title?

@ Not the message | want to share

e “Us” vs. “Them” mentality is toxic
e | want to unify, not divide.
o We learn more together!

@ Most concepts in this talk are applicable to all FP languages

e Even those lacking statically checked types!

Allele Dev (@queertypes) Fhe-CaseforHaskelt Ask More of Your Languages

Generalizing This Talk

@ Haskell is my medium for these concepts
@ They're largely applicable to all of:

Rust

Ocaml

F#

=0

Standard ML
Idris

Swift

Scala

Elm
Purescript

Allele Dev (@queertypes) Fhe-CaseforHaskelt Ask More of Your Languages

http://www.rust-lang.org/
http://ocaml.org/
http://fsharp.org/
http://research.microsoft.com/en-us/projects/fstar/
http://sml-family.org/
http://www.idris-lang.org/
https://developer.apple.com/swift/
http://www.scala-lang.org/
http://elm-lang.org/
http://www.purescript.org/

Generalizing This Talk

@ And with gradual typing or additional typing mechanisms

o Racket 4+ Types
o Clojure + Types
e Erlang + Types

Allele Dev (@queertypes) Fhe-CaseforHaskelt Ask More of Your Languages

http://racket-lang.org/
http://docs.racket-lang.org/ts-guide/index.html?q=typed
http://clojure.org/
http://typedclojure.org/
http://www.erlang.org/
http://www.erlang.org/doc/reference_manual/typespec.html

Why Do Types Matter? (Briefly)

@ They help prove our programs correct
e Complementary to testing
@ They communicate intent and abstractions

Allele Dev (@queertypes) Fhe-CaseforHaskelt Ask More of Your Languages

Our First Type Error in a REPL

> 1 + Hlll

Allele Dev (@queertypes) Fhe-CaseforHaskelt Ask More of Your Languages

Our First Type Error in a REPL

> 1 + lllll

No instance for (Num [Char]) arising from a use of ‘+’
In the expression: 1 + "1"
In an equation for ‘it’: it =1 + "1"

Allele Dev (@queertypes) Fhe-CaseforHaskelt Ask More of Your Languages

Our First Type Error in a REPL

> 1 + lllll

No instance for (Num [Char]) arising from a use of ‘+’
In the expression: 1 + "1"
In an equation for ‘it’: it = 1 + "1"

@ Statically checked, typed languages are WAT-resistant

Allele Dev (@queertypes) Fhe-CaseforHaskelt Ask More of Your Languages

https://www.destroyallsoftware.com/talks/wat

More Information: Our First Type Error in a Source File

-— wat-resistant.hs
main = print $ 1 + "1"

Allele Dev (@queertypes) Fhe-CaseforHaskelt Ask More of Your Languages

More Information: Our First Type Error in a Source File

alejandro@rainbow-generator:~:$ ghc wat-resistant.hs
[1 of 1] Compiling Main (wat-resistant.hs,
wat-resistant.o)

wat-resistant.hs:1:18:
No instance for (Num [Char]) arising from a use of ‘+’
In the second argument of ‘($)’, namely ‘1 + "1"’
In the expression: print $ 1 + "1"
In an equation for ‘main’: main = print $ 1 + "1"

@ 150ms to type check, and what did we learn?

e Line and column number of the error: 1:18
o What the problem is: can't add a Num and a [Char]
o With a trace zoning in on the problematic source

Allele Dev (@queertypes) Fhe-CaseforHaskelt Ask More of Your Languages

What Makes a Language Capable of This?

Allele Dev (@queertypes) Fhe-CaseforHaskelt Ask More of Your Languages

The Key Ingredients (with a Heavy Dose of Jargon)

@ A solid type system

User-defined types
Parametric polymorphism
Product types

Sum types

Recursive types

@ Optionally: a great type system

e Higher kinds
o Effect tracking

@ Type inference: Hindley-Milner or better
@ Pattern matching

Allele Dev (@queertypes) Fhe-CaseforHaskelt Ask More of Your Languages

http://en.wikipedia.org/wiki/Hindley%E2%80%93Milner_type_system

User-defined Types

@ A typedef that the compiler treats as distinct from the original
type
e A rough approximation: wrap all primitive types in C with
structs

VI 220220020082 202022020000200044
struct PersonName {char* name;};
struct Address {char* name;};
struct ProcessId {int pid;};

i

newtype PersonName = String
newtype Address = String
newtype ProcessId = Int

Allele Dev (@queertypes) Fhe-CaseforHaskelt Ask More of Your Languages

Parametric Polymorphism

@ A powerful means to express generic functions

e The good parts of c++ templates without the bad parts

id :: a -> a
map :: (a -> b) -> [a] -> [b]
sort :: Ord a => [a] -> [a]

Allele Dev (@queertypes) Fhe-CaseforHaskelt Ask More of Your Languages

Product Types

o Compile-time tuples, pairs of information
@ Representable in most languages using structs/classes

Allele Dev (@queertypes) Fhe-CaseforHaskelt Ask More of Your Languages

Sum Types

@ A disjoint union, a series of alternates, compile-time enforced

enum
@ Not available in most main-stream languages

data Maybe a = Just a | Nothing

data ROYGBIV
Red | Orange | Yellow | Green | Blue | Indigo | Violet

data LogMessage =
UserLine String String
| ErrorLine Int String
| OtherLine String

Allele Dev (@queertypes) Fhe-CaseforHaskelt Ask More of Your Languages

Recursive Types

e Can express infinite data structures and/or hierarchies at

compile-time
data List a = List a | Nil
data BinaryTree a =

Node a
| Branch (BinaryTree a) (BinaryTree a)

-— great for collision detection

data QTree a =

QLeaf a
| QBranch (QTree a) (QTree a) (QTree a) (QTree a)

Allele Dev (@queertypes) Fhe-CaseforHaskelt Ask More of Your Languages

Higher Kinds

@ Types that exist a level above types

o Tell us what a valid type looks like

@ Thinking in terms of shapes helps explain:

o Types describe the shape of values
o Kinds describe the shape of types

-— Maybe has kind: * —> *
-- Prevents nonsense like: Maybe Maybe
data Maybe a = Just a | Nothing

-— Either has kind: * —-> * —-> *
-— for laughs: Either Maybe Maybe
data Either ab=a | b

Allele Dev (@queertypes) Fhe-CaseforHaskelt Ask More of Your Languages

Effect Tracking

@ A technique that arises from combining
e parametric polymorphism
e higher kinds
@ Allows for compiler to detect when:
e code would change state
o interact with “world": disk/terminal /network 1/0

@ Enables safe software transactional memory

printName :: String -> I0 ()
printName name = print name

readPidFile :: String -> IO0 Int
readPidFile path = do
handle <- openFile path ReadMode
contents <- hGetContents handle
return (read contents)

Allele Dev (@queertypes) Fhe-CaseforHaskelt Ask More of Your Languages

http://chimera.labs.oreilly.com/books/1230000000929/ch10.html

Type Inference

@ The compiler makes conservative attempts to automatically
fill in type information

o If there's no inheritance/sub-typing, the answer is guaranteed to
be exact

@ Bare minimum you have to do: annotate top-level declaration

Allele Dev (@queertypes) Fhe-CaseforHaskelt Ask More of Your Languages

Pattern Matching

@ Write your functions against the shape of the data

o Better than a switch statement
o Less verbose than if-else-if-else chains

e Works with recursive types, too! (not shown)

data Move = Rock | Paper | Scissor
data Outcome = Win | Lose

rockPaperScissor :: Move -> Move -> (utcome
rockPaperScissor Rock Scissor = Win
rockPaperScissor Scissor Paper = Win
rockPaperScissor Paper Rock = Win
rockPaperScissor _ _ = Lose

Allele Dev (@queertypes) Fhe-CaseforHaskelt Ask More of Your Languages

Example Data Type: JSON

-— json.hs
data JValue =
JString String

| JNumber Double
| JBool Bool
| JNull
| JObject [(String, JValue)]
| JArray [JValuel

render :: JValue -> String
render (JString s)
render (JNumber i) = show i
render JNull = "null"

S

render (JObject o) = "{" ++ obj o ++ "}"
where obj [] = ""
obj ps = intercalate "," (map render(Obj ps)
renderObj (k,v) = show k ++ ": " ++ render v

Allele Dev (@queertypes) Fhe-CaseforHaskelt Ask More of Your Languages

Example Data Type: JSON

@ Can do nifty things like:

$ ghci json.hs
> render (JObject [("cat", JNumber 10)])
> ”{\”Cat\“: 1o}u

Allele Dev (@queertypes) Fhe-CaseforHaskelt Ask More of Your Languages

Example Data Type: JSON

@ ...and if we ask the compiler to warn us extensively:

$ ghci -Wall json.hs
[1 of 1] Compiling Main (json.hs, interpreted)

json.hs:12:1: Warning:
Pattern match(es) are non-exhaustive
In an equation for ‘render’:
Patterns not matched:
JBool _
JArray _

Allele Dev (@queertypes) Fhe-CaseforHaskelt Ask More of Your Languages

Example: Refactoring Rock, Paper, Scissors

@ Notice in our previous version we excluded the possibility of a
Draw outcome
@ Let's fix that!

Allele Dev (@queertypes) Fhe-CaseforHaskelt Ask More of Your Languages

Example: Refactoring Rock, Paper, Scissors

data Move = Rock | Paper | Scissor
data Outcome = Win | Lose

rockPaperScissor :: Move -> Move -> (Outcome
rockPaperScissor Rock Scissor = Win
rockPaperScissor Scissor Paper = Win
rockPaperScissor Paper Rock = Win
rockPaperScissor _ _ = Lose

Allele Dev (@queertypes) Fhe-CaseforHaskelt Ask More of Your Languages

Example: Refactoring Rock, Paper, Scissors

data Move = Rock | Paper | Scissor deriving Eq
data Outcome = Win | Lose | Draw

rockPaperScissor :: Move -> Move -> (utcome
rockPaperScissor Rock Scissor = Win
rockPaperScissor Scissor Paper = Win
rockPaperScissor Paper Rock = Win

rockPaperScissor left right | left == right = Draw

rockPaperScissor _ _ = Lose

Allele Dev (@queertypes) Fhe-CaseforHaskelt Ask More of Your Languages

Types Matter - Take Two

o lteratively prove your programs correct: Curry-Howard style
@ Stephanie Weirich elaborates this eloquently:

o Lightweight, machine-checked, and ubiquituous verification
o Wonderful for refactoring safely

@ Just as important, types communicate to others
unambiguously

e What you mean and what your abstractions look like

o Altogether, they show and preserve the shape of your program

Allele Dev (@queertypes) Fhe-CaseforHaskelt Ask More of Your Languages

http://homepages.inf.ed.ac.uk/wadler/papers/propositions-as-types/propositions-as-types.pdf
http://www.cis.upenn.edu/~sweirich/talks/facebook13.pdf

The Art and Math of Abstraction

Art: personal, fluid, experimental

Math: collective, rigid, proven

Both are important!

Type systems enable and amplify both the math and the art

Allele Dev (@queertypes) Fhe-CaseforHaskelt Ask More of Your Languages

The Art and Math of Abstraction

-— art: how do you encode your swirlies?
type Radius = Int

type Density = Int

data Swirlies = Swirlies Radius Density

-— math: use Monoid for combining Swirlies
-- monoid: an tdentity element
- and an associative binary operator
- (think: = + 0 = ¢, (+) is operator, 0 s identity)
instance Monoid Swirlies where
mempty = Swirlies O 1
mappend (Swirlies lrad ldens) (Swirlies rrad rdens) =
Swirlies (lrad + rrad) (rdens * ldens)

Allele Dev (@queertypes) Fhe-CaseforHaskelt Ask More of Your Languages

Thoughts on Productive Criticism of a Programming

Language

@ A programming language is the frontend for your type system

e Judge a language based on its ability to support your
abstractions at compile-time

Allele Dev (@queertypes) Fhe-CaseforHaskelt Ask More of Your Languages

However!

@ Must also account for:

Allele Dev (@queertypes) Fhe-CaseforHaskelt Ask More of Your Languages

However!

@ Must also account for:

e social considerations: community, diversity, communication, etc.

Allele Dev (@queertypes) Fhe-CaseforHaskelt Ask More of Your Languages

However!

@ Must also account for:

e social considerations: community, diversity, communication, etc.
e systems considerations: real-time, performance, etc.

Allele Dev (@queertypes) Fhe-CaseforHaskelt Ask More of Your Languages

However!

@ Must also account for:

e social considerations: community, diversity, communication, etc.
e systems considerations: real-time, performance, etc.
e enterprise considerations: hiring, platform support, etc.

Allele Dev (@queertypes) Fhe-CaseforHaskelt Ask More of Your Languages

What Does the Future Hold?

o Type system advancements:

o Dependent types: values at the type level

o Linear types: capture use-only-once, close-after-open, RAIl at
type level

e Smarter gradual typing, gradual effect systems

@ Smarter tools:
e Search engines for functions: hoogle hayoo

e Editors: Lamdu
o Code generation: Rest, lvory

o Better abstractions:

functional reactive programming
parsing

crypto

performance

@ Better module systems
@ More learning resources
@ Better communities

Allele Dev (@queertypes) Fhe-CaseforHaskelt Ask More of Your Languages

http://www.haskell.org/hoogle/
http://holumbus.fh-wedel.de/hayoo/hayoo.html
http://peaker.github.io/lamdu/
http://engineering.silk.co/post/90354057868/announcing-rest-a-haskell-rest-framework
http://smaccmpilot.org/languages/ivory-introduction.html
http://elm-lang.org/learn/What-is-FRP.elm
http://michaelxavier.net/posts/2012-01-20-Writing-a-Small-Parser-with-Attoparsec.html
http://www.cryptol.net/
http://hackage.haskell.org/package/accelerate

Ask More of Your Languages

@ Together, in pursuit of software that works

Allele Dev (@queertypes) Fhe-CaseforHaskelt Ask More of Your Languages

Ask More of Your Languages

@ Together, in pursuit of software that works
@ Individually, as you explore what makes technology exciting for
you

Allele Dev (@queertypes) Fhe-CaseforHaskelt Ask More of Your Languages

Ask More of Your Languages

@ Together, in pursuit of software that works

@ Individually, as you explore what makes technology exciting for
you
@ Let's ask more of our languages

Allele Dev (@queertypes) Fhe-CaseforHaskelt Ask More of Your Languages

Ask More of Your Languages

@ Together, in pursuit of software that works

@ Individually, as you explore what makes technology exciting for
you

@ Let's ask more of our languages

@ Towards a better tomorrow

Allele Dev (@queertypes) Fhe-CaseforHaskelt Ask More of Your Languages

Thank Youl

Allele Dev (@queertypes) Fhe-CaseforHaskel Ask More of

