
The Case for Haskell Ask More of Your Languages

Allele Dev (@queertypes)

July 22, 2014

Allele Dev (@queertypes) The Case for Haskell Ask More of Your Languages

Contact Me!

Github: cabrera
Twitter: @queertypes
Blog: Read, Review, Refactor

Allele Dev (@queertypes) The Case for Haskell Ask More of Your Languages

https://github.com/cabrera
https://twitter.com/cppcabrera
https://blog.cppcabrera.com/

What?

Programming languages shape how we solve problems
Types are a valuable tool for enforcing and communicating
design
Many mainstream languages are missing key ingredients for
sound abstraction

Allele Dev (@queertypes) The Case for Haskell Ask More of Your Languages

Why the Change in Title?

Not the message I want to share
“Us” vs. “Them” mentality is toxic
I want to unify, not divide.
We learn more together!

Most concepts in this talk are applicable to all FP languages
Even those lacking statically checked types!

Allele Dev (@queertypes) The Case for Haskell Ask More of Your Languages

Generalizing This Talk

Haskell is my medium for these concepts
They’re largely applicable to all of:

Rust
Ocaml
F#
F*
Standard ML
Idris
Swift
Scala
Elm
Purescript

Allele Dev (@queertypes) The Case for Haskell Ask More of Your Languages

http://www.rust-lang.org/
http://ocaml.org/
http://fsharp.org/
http://research.microsoft.com/en-us/projects/fstar/
http://sml-family.org/
http://www.idris-lang.org/
https://developer.apple.com/swift/
http://www.scala-lang.org/
http://elm-lang.org/
http://www.purescript.org/

Generalizing This Talk

And with gradual typing or additional typing mechanisms
Racket + Types
Clojure + Types
Erlang + Types

Allele Dev (@queertypes) The Case for Haskell Ask More of Your Languages

http://racket-lang.org/
http://docs.racket-lang.org/ts-guide/index.html?q=typed
http://clojure.org/
http://typedclojure.org/
http://www.erlang.org/
http://www.erlang.org/doc/reference_manual/typespec.html

Why Do Types Matter? (Briefly)

They help prove our programs correct
Complementary to testing
They communicate intent and abstractions

Allele Dev (@queertypes) The Case for Haskell Ask More of Your Languages

Our First Type Error in a REPL

--
> 1 + "1"
--

Allele Dev (@queertypes) The Case for Haskell Ask More of Your Languages

Our First Type Error in a REPL

--
> 1 + "1"

No instance for (Num [Char]) arising from a use of ‘+’
In the expression: 1 + "1"
In an equation for ‘it’: it = 1 + "1"

--

Allele Dev (@queertypes) The Case for Haskell Ask More of Your Languages

Our First Type Error in a REPL

--
> 1 + "1"

No instance for (Num [Char]) arising from a use of ‘+’
In the expression: 1 + "1"
In an equation for ‘it’: it = 1 + "1"

--

Statically checked, typed languages are WAT-resistant

Allele Dev (@queertypes) The Case for Haskell Ask More of Your Languages

https://www.destroyallsoftware.com/talks/wat

More Information: Our First Type Error in a Source File

-- wat-resistant.hs
main = print $ 1 + "1"

Allele Dev (@queertypes) The Case for Haskell Ask More of Your Languages

More Information: Our First Type Error in a Source File

--
alejandro@rainbow-generator:~:$ ghc wat-resistant.hs
[1 of 1] Compiling Main (wat-resistant.hs,

wat-resistant.o)

wat-resistant.hs:1:18:
No instance for (Num [Char]) arising from a use of ‘+’
In the second argument of ‘($)’, namely ‘1 + "1"’
In the expression: print $ 1 + "1"
In an equation for ‘main’: main = print $ 1 + "1"

--

150ms to type check, and what did we learn?
Line and column number of the error: 1:18
What the problem is: can’t add a Num and a [Char]
With a trace zoning in on the problematic source

Allele Dev (@queertypes) The Case for Haskell Ask More of Your Languages

What Makes a Language Capable of This?

Allele Dev (@queertypes) The Case for Haskell Ask More of Your Languages

The Key Ingredients (with a Heavy Dose of Jargon)

A solid type system
User-defined types
Parametric polymorphism
Product types
Sum types
Recursive types

Optionally: a great type system
Higher kinds
Effect tracking

Type inference: Hindley-Milner or better
Pattern matching

Allele Dev (@queertypes) The Case for Haskell Ask More of Your Languages

http://en.wikipedia.org/wiki/Hindley%E2%80%93Milner_type_system

User-defined Types

A typedef that the compiler treats as distinct from the original
type

A rough approximation: wrap all primitive types in C with
structs

////////////////////////////////
struct PersonName {char* name;};
struct Address {char* name;};
struct ProcessId {int pid;};
////////////////////////////////

newtype PersonName = String
newtype Address = String
newtype ProcessId = Int

Allele Dev (@queertypes) The Case for Haskell Ask More of Your Languages

Parametric Polymorphism

A powerful means to express generic functions
The good parts of c++ templates without the bad parts

id :: a -> a
map :: (a -> b) -> [a] -> [b]
sort :: Ord a => [a] -> [a]

Allele Dev (@queertypes) The Case for Haskell Ask More of Your Languages

Product Types

Compile-time tuples, pairs of information
Representable in most languages using structs/classes

swap :: (a, b) -> (b, a)

Allele Dev (@queertypes) The Case for Haskell Ask More of Your Languages

Sum Types

A disjoint union, a series of alternates, compile-time enforced
enum
Not available in most main-stream languages

--
data Maybe a = Just a | Nothing

data ROYGBIV =
Red | Orange | Yellow | Green | Blue | Indigo | Violet

data LogMessage =
UserLine String String

| ErrorLine Int String
| OtherLine String

--

Allele Dev (@queertypes) The Case for Haskell Ask More of Your Languages

Recursive Types

Can express infinite data structures and/or hierarchies at
compile-time

data List a = List a | Nil
data BinaryTree a =

Node a
| Branch (BinaryTree a) (BinaryTree a)

-- great for collision detection
data QTree a =

QLeaf a
| QBranch (QTree a) (QTree a) (QTree a) (QTree a)

Allele Dev (@queertypes) The Case for Haskell Ask More of Your Languages

Higher Kinds

Types that exist a level above types
Tell us what a valid type looks like

Thinking in terms of shapes helps explain:
Types describe the shape of values
Kinds describe the shape of types

-- Maybe has kind: * -> *
-- Prevents nonsense like: Maybe Maybe
data Maybe a = Just a | Nothing

-- Either has kind: * -> * -> *
-- for laughs: Either Maybe Maybe
data Either a b = a | b

Allele Dev (@queertypes) The Case for Haskell Ask More of Your Languages

Effect Tracking

A technique that arises from combining
parametric polymorphism
higher kinds

Allows for compiler to detect when:
code would change state
interact with “world”: disk/terminal/network I/O

Enables safe software transactional memory

printName :: String -> IO ()
printName name = print name

readPidFile :: String -> IO Int
readPidFile path = do

handle <- openFile path ReadMode
contents <- hGetContents handle
return (read contents)

Allele Dev (@queertypes) The Case for Haskell Ask More of Your Languages

http://chimera.labs.oreilly.com/books/1230000000929/ch10.html

Type Inference

The compiler makes conservative attempts to automatically
fill in type information

If there’s no inheritance/sub-typing, the answer is guaranteed to
be exact

Bare minimum you have to do: annotate top-level declaration

Allele Dev (@queertypes) The Case for Haskell Ask More of Your Languages

Pattern Matching

Write your functions against the shape of the data
Better than a switch statement
Less verbose than if-else-if-else chains

Works with recursive types, too! (not shown)

data Move = Rock | Paper | Scissor
data Outcome = Win | Lose

rockPaperScissor :: Move -> Move -> Outcome
rockPaperScissor Rock Scissor = Win
rockPaperScissor Scissor Paper = Win
rockPaperScissor Paper Rock = Win
rockPaperScissor _ _ = Lose

Allele Dev (@queertypes) The Case for Haskell Ask More of Your Languages

Example Data Type: JSON

-- json.hs
data JValue =

JString String
| JNumber Double
| JBool Bool
| JNull
| JObject [(String, JValue)]
| JArray [JValue]

render :: JValue -> String
render (JString s) = s
render (JNumber i) = show i
render JNull = "null"
render (JObject o) = "{" ++ obj o ++ "}"

where obj [] = ""
obj ps = intercalate "," (map renderObj ps)
renderObj (k,v) = show k ++ ": " ++ render v

Allele Dev (@queertypes) The Case for Haskell Ask More of Your Languages

Example Data Type: JSON

Can do nifty things like:

--
$ ghci json.hs
> render (JObject [("cat", JNumber 10)])
> "{\"cat\": 10}"
--

Allele Dev (@queertypes) The Case for Haskell Ask More of Your Languages

Example Data Type: JSON

. . . and if we ask the compiler to warn us extensively:

$ ghci -Wall json.hs
[1 of 1] Compiling Main (json.hs, interpreted)

json.hs:12:1: Warning:
Pattern match(es) are non-exhaustive

In an equation for ‘render’:
Patterns not matched:

JBool _
JArray _

Allele Dev (@queertypes) The Case for Haskell Ask More of Your Languages

Example: Refactoring Rock, Paper, Scissors

Notice in our previous version we excluded the possibility of a
Draw outcome
Let’s fix that!

Allele Dev (@queertypes) The Case for Haskell Ask More of Your Languages

Example: Refactoring Rock, Paper, Scissors

data Move = Rock | Paper | Scissor
data Outcome = Win | Lose

rockPaperScissor :: Move -> Move -> Outcome
rockPaperScissor Rock Scissor = Win
rockPaperScissor Scissor Paper = Win
rockPaperScissor Paper Rock = Win
rockPaperScissor _ _ = Lose

Allele Dev (@queertypes) The Case for Haskell Ask More of Your Languages

Example: Refactoring Rock, Paper, Scissors

data Move = Rock | Paper | Scissor deriving Eq
data Outcome = Win | Lose | Draw

rockPaperScissor :: Move -> Move -> Outcome
rockPaperScissor Rock Scissor = Win
rockPaperScissor Scissor Paper = Win
rockPaperScissor Paper Rock = Win
rockPaperScissor left right | left == right = Draw
rockPaperScissor _ _ = Lose

Allele Dev (@queertypes) The Case for Haskell Ask More of Your Languages

Types Matter - Take Two

Iteratively prove your programs correct: Curry-Howard style
Stephanie Weirich elaborates this eloquently:

Lightweight, machine-checked, and ubiquituous verification
Wonderful for refactoring safely

Just as important, types communicate to others
unambiguously

What you mean and what your abstractions look like

Altogether, they show and preserve the shape of your program

Allele Dev (@queertypes) The Case for Haskell Ask More of Your Languages

http://homepages.inf.ed.ac.uk/wadler/papers/propositions-as-types/propositions-as-types.pdf
http://www.cis.upenn.edu/~sweirich/talks/facebook13.pdf

The Art and Math of Abstraction

Art: personal, fluid, experimental
Math: collective, rigid, proven
Both are important!
Type systems enable and amplify both the math and the art

Allele Dev (@queertypes) The Case for Haskell Ask More of Your Languages

The Art and Math of Abstraction

-- art: how do you encode your swirlies?
type Radius = Int
type Density = Int
data Swirlies = Swirlies Radius Density

-- math: use Monoid for combining Swirlies
-- monoid: an identity element
-- and an associative binary operator
-- (think: x + 0 = x, (+) is operator, 0 is identity)
instance Monoid Swirlies where

mempty = Swirlies 0 1
mappend (Swirlies lrad ldens) (Swirlies rrad rdens) =

Swirlies (lrad + rrad) (rdens * ldens)

Allele Dev (@queertypes) The Case for Haskell Ask More of Your Languages

Thoughts on Productive Criticism of a Programming
Language

A programming language is the frontend for your type system
Judge a language based on its ability to support your
abstractions at compile-time

Allele Dev (@queertypes) The Case for Haskell Ask More of Your Languages

However!

Must also account for:

social considerations: community, diversity, communication, etc.
systems considerations: real-time, performance, etc.
enterprise considerations: hiring, platform support, etc.

Allele Dev (@queertypes) The Case for Haskell Ask More of Your Languages

However!

Must also account for:
social considerations: community, diversity, communication, etc.

systems considerations: real-time, performance, etc.
enterprise considerations: hiring, platform support, etc.

Allele Dev (@queertypes) The Case for Haskell Ask More of Your Languages

However!

Must also account for:
social considerations: community, diversity, communication, etc.
systems considerations: real-time, performance, etc.

enterprise considerations: hiring, platform support, etc.

Allele Dev (@queertypes) The Case for Haskell Ask More of Your Languages

However!

Must also account for:
social considerations: community, diversity, communication, etc.
systems considerations: real-time, performance, etc.
enterprise considerations: hiring, platform support, etc.

Allele Dev (@queertypes) The Case for Haskell Ask More of Your Languages

What Does the Future Hold?

Type system advancements:
Dependent types: values at the type level
Linear types: capture use-only-once, close-after-open, RAII at
type level
Smarter gradual typing, gradual effect systems

Smarter tools:
Search engines for functions: hoogle hayoo
Editors: Lamdu
Code generation: Rest, Ivory

Better abstractions:
functional reactive programming
parsing
crypto
performance

Better module systems
More learning resources
Better communities

Allele Dev (@queertypes) The Case for Haskell Ask More of Your Languages

http://www.haskell.org/hoogle/
http://holumbus.fh-wedel.de/hayoo/hayoo.html
http://peaker.github.io/lamdu/
http://engineering.silk.co/post/90354057868/announcing-rest-a-haskell-rest-framework
http://smaccmpilot.org/languages/ivory-introduction.html
http://elm-lang.org/learn/What-is-FRP.elm
http://michaelxavier.net/posts/2012-01-20-Writing-a-Small-Parser-with-Attoparsec.html
http://www.cryptol.net/
http://hackage.haskell.org/package/accelerate

Ask More of Your Languages

Together, in pursuit of software that works

Individually, as you explore what makes technology exciting for
you
Let’s ask more of our languages
Towards a better tomorrow

Allele Dev (@queertypes) The Case for Haskell Ask More of Your Languages

Ask More of Your Languages

Together, in pursuit of software that works
Individually, as you explore what makes technology exciting for
you

Let’s ask more of our languages
Towards a better tomorrow

Allele Dev (@queertypes) The Case for Haskell Ask More of Your Languages

Ask More of Your Languages

Together, in pursuit of software that works
Individually, as you explore what makes technology exciting for
you
Let’s ask more of our languages

Towards a better tomorrow

Allele Dev (@queertypes) The Case for Haskell Ask More of Your Languages

Ask More of Your Languages

Together, in pursuit of software that works
Individually, as you explore what makes technology exciting for
you
Let’s ask more of our languages
Towards a better tomorrow

Allele Dev (@queertypes) The Case for Haskell Ask More of Your Languages

Thank You!

Allele Dev (@queertypes) The Case for Haskell Ask More of Your Languages

